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Abstract. This study is analyzing the influence of various physical parameters on the heating and cooling 

load requirements of a building. In order to determining the most relevant combination of parameters for 

assessing energy efficiency we have created a framework which combines a stochastic classification 

method, namely Gaussian Mixture Model, with a combinatorial optimization procedure. The framework 

was evaluated using a simulated benchmark database consisting of 768 buildings. 
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INTRODUCTION 

This study looks into the problem of assessing the building energy efficiency. More exactly the heating 

load (HL) and cooling load (CL) are studied as a function of a number of physical building parameters. The 

optimal number of the parameters used to predict the energy consumption required for HL and CL, calculated on 

a yearly basis, were found using an optimization procedure.   

PROBLEM DEFINITION 

In recent years, a large number of approaches have been proposed to model trends in energy 

consumption for future buildings systems [1-5]. In general these methods are Supervised Learning (SL) methods. 

In SL, one set of observations, called inputs, are assumed to be the cause of a different set of observations, called 

outputs. SL is the machine learning procedure which tries to discover a function from labeled training data. More 

formally, if we define an input space X and an output space Y , the question of learning is reduced to the 

question of estimating a functional relationship of the form C: X →Y that is a relationship between input and 

output. Such a mapping C is called a classifier. The flow diagram for this procedure can be seen in Figure 1.  

 

Figure 1. Supervised learning flow diagram.  

In our specific case, the X space is given by the building parameters and the Y space is given by the HL 

and CL. Further the mathematical details of the classifier used are presented below. 

GAUSSIAN MIXTURE MODEL 

A Gaussian Mixture Model (GMM) is defined as a convex linear combination of several probability 

density functions represented as a weighted sum of M Gaussian component densities given by 
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 where x  is a D -dimensional continuous-valued data vector. iw  , 

Mi 1 are the mixture weights, and  )|( iixg  Mi 1  are the component Gaussian densities. 

Each component density is a D -variant Gaussian function with mean vector i and covariance matrix i . The 

mixture weights satisfy the constraint that 1
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iw .The complete Gaussian mixture model is parameterized 

by the mean vectors, covariance matrices and mixture weights from all component densities. These parameters 
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are collectively represented by the notation ),,( iiiw   , Mi 1 . Additionally, parameters can be 

shared among the Gaussian components determining a common covariance matrix for all features. The linear 

combination of diagonal covariance basis Gaussians is capable of modeling the correlations between feature 

vector elements. One of the powerful attributes of the GMM is its ability to produce smooth approximations to 

arbitrarily shaped densities. The classical uni-modal Gaussian model represents feature distributions by a 

position and an elliptic shape. A vector quantizer (VQ) or nearest neighbor model represents a distribution by a 

discrete set of characteristic templates [5]. A GMM acts as a hybrid between these two models by using a 

discrete set of Gaussian functions, each with their own mean and covariance matrix, to provide a better modeling 

capability. 

EXPERIMENTS AND RESULTS 

The benchmark dataset [6] used in the experiments comprises 768 samples. Each sample has 8 features 

to predict the real valued responses (i.e. HL and CL). These responses can also be seen as a multi-class 

classification problem if their values are rounded to the nearest integer. Fig. 2 shows the distribution of the 

classes. Overall, the samples represent 12 different building shapes, with the same volume, simulated in Ecotect. 

They differ with respect to the following parameters: Relative Compactness(X1), Surface Area (X2), Wall 

Area(X3), Roof Area(X4), Overall Height (X5), Orientation (X6), Glazing Area (X7), Glazing Area 

Distribution(X8). The aim is to find the optimal combination of the parameters in order to achieve the best 

classification accuracy of HL and CL. In Table 1 are presented the combination of the parameters which perform 

with the highest accuracy. The GMM accuracy using all parameters is 71.61% for HL and 73.82% respectively 

for CL. 

 

Figure 2. Heating load (HL) and cooling load (CL) rounded 

to the nearest integer 

Table 1. Classification accuracies for GMM using the 

optimal parameters 

Xi(HL) Accuracy Xi(CL) Accuracy 

[2,5,7] 73.6% [1,2,3,7,8] 75.1% 

[2,5,8] 73.6% [1,3,4,7,8] 75.1% 

[2,5,6,7] 73.6% [1,2,3,6,7,8] 75.1% 

[2,5,6,8] 73.6% [1,3,4,6,7,8] 75.1% 

[2,5,7,8] 73.6% [2,3,7] 74.9% 

[2,5,6,7,8] 73.1% [2,3,8] 74.9% 

[2,5] 72.6% [3,4,7] 74.9% 

[2,3,7,8] 72.6% [3,4,8] 74.9% 

[1,3,5,7,8] 72.6% [2,3,6,7] 74.8% 

[2,3,5,7,8] 72.6% [2,3,6,8] 74.8% 

CONCLUSIONS 

The exhaustive search was performed using the GMM output for each combination of the parameters. 

The results identify the most influential variable or group of variables highlighting the optimal choice of 

parameters for modeling heating and cooling loads in a building. The accuracy obtained using only three 

parameters, namely “Surface Area”, “Overall Height” and “Glazing Area”, show an improvement over the 

accuracy using all data for HL. Also, a combination of five physical parameters of the building showed a higher 

accuracy in predicting CL than using the entire dataset. These results, somewhat counter-intuitive, are thought to 

improve the computation time for optimization models aiming to achieve more energy-efficient buildings. 
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